AL-FARABI KAZAKH NATIONAL UNIVERSITY

Faculty of Chemistry and Chemical Technology

Department of chemistry and technology of organic matters, natural compounds and polymers

SYLLABUS

For the discipline of **Modern problems of organic chemistry** to the speciality "6M060600-Chemistry"

General information:

<u>Faculty of Chemistry and Chemical Technology</u>. Chair of chemistry and technology of organic matters, natural compounds and polymers

Name of program – Master program

Prerekvisits: Analysis of medical drugs on the basis of organic compounds using of new methods.

Information about lecture: Dr. Bates Kudaibergenova Malikovna – PhD

Dr.Bates Kudaibergenova Malikovna working with natural polymer composite. According to results have been published 40 publication and 3patents.

Contact information: Department of chemistry and technology of organic matters, natural compounds and polymersi, Almaty, Kazakhstan E-mail: <u>bates81@mail.ru</u>

Politics of course

Activity during research work;

• Preparation for study.

Program of course

Characteristic of course: Study of modern problems of organic compounds. Use the modern physical and chemical methods obtained more significance for identification of complicated biological activity substances and materials. Using this methods can decide a problem of qualitative and quantitative analysis different synthetic and natural object.

The aim of course – Study of modern problems of organic chemistry using of new physical and chemical methods and creature of medical preparation in the wide spectrum of medical-biological purpose.

Interaction task – systematical approach of methods of analysis of organic substances.

Knowledge and ability after passing of course: The future specialists in study of this course have to know about modern state introduction of physical-chemical method. And they have to be able study of organic compound by the physical-chemical methods.

Methodology: Lecture, Seminar, Discussion and oral presentation.

Materials for obligatory learn: supplementary data Materials for supplementary reading: supplementary data Schedule of lectures

Week	Schedule of lectures	Lecture	Seminar	SWM
1.	Lecture. The current state of the theory of organic structure. Classification reactions and reagents. Basicity, nucleophilicity, electrophilicity, acidity. Electronic effects in organic molecules. Factors	2		SWM-1. Krebs cycle. The compounds with multiple chiral centers.

	determining the reactivity of the			
	molecules. Resonance theory.			
	Practical exercises. Modern ideas			
	about the nature of chemical bonds.		1	
	Hybridization of the carbon and			
	nitrogen atoms. Electronegativity of			
	atoms and groups.			
2.	Lecture. The properties of	2		
	molecules and intermolecular			
	forces. The theory of displacement			
	of electron pairs. Inductive and			
	mesomeric effects in static and			
	dynamic systems.			
	Practical exercises.		1	
	Hyperconjugation as intermolecular		-	
	σ , π -perturbation. Perturbation of			
	molecular orbitals.			
2		2		SWM -2. The
3.	Lecture. The concept of the	2		
	mechanism of organic reaction			compounds with
	mechanism. The reaction			multiple chiral centers.
	mechanism of radical substitution.			Stereochemistry of
	Alkyl radicals, the structure and the			heterocycles.
	basic methods of generating.			
	Detection and determination of the			
	structure of free radicals.			
	Practical exercises. Oxidation and			
	reduction of free radicals.		1	
	Chain mechanism and its key stages.			
	Stable Radicals triphenylmethane			
	series. Diradicals and their role in			
	photochemical reactions.			
4.	Lecture. Nucleophilic substitution	2		
	at saturated carbon atoms. Factors			
	affecting the stability of			
	carbocations, the explanation of the			
	stabilizing effect of the substituents.			
	Practical exercises. Nonclassical			
	carbocations. Preparation of		1	
	carbanions in solution (superbasic			
	media). Factors affecting the			
	stability of carbanions.			
5.	Lecture. Mechanisms SN1 and	2		SWM -3.
	SN2. Experimental evidence.			Conformational features
	Factors affecting the mechanisms of			of secondary cycles.
	nucleophilic substitution. Ion pairs			The conformation of the
	in the process of unimolecular			macrocycles
	nucleophilic substitution.			
	Stereochemistry. Border area.			
	Theory of single-electron shift.			
	Other SN-mechanisms.			
	Practical exercises.		1	
	Stereochemistry. The spatial			
	storeochemistry. The spatial			l

	structure of organic molecules.			
	Spatial interaction of unbound			
	atoms and groups. The concept of			
	molecular conformation.			
	Conformation and configuration of			
	the molecules.			
6.	Lecture. Elimination reaction (E1	2		
	E1sB, E2). Stereochemistry of E2-			
	elimination. Orientation of the			
	double bond in the elimination			
	product. Competition elimination			
	and substitution.			
	Practical exercises. Transition state		1	
	theory. Potential energy			
	hypersurface, coordinate and energy			
	profile of the reaction.			
	Thermodynamic parameters of			
	activation.			
7.	Lecture. Electrophilic substitution	2		SWM -4. Asymmetric
<i>.</i>	at saturated carbon atoms. The	-		synthesis and catalysis.
	leaving group. Mechanism of			The asymmetric
	electrophilic substitution.			reduction of the
	Nucleophilic assistance. Reactions			carbonyl group.
	of carbon acids.			carbonyi group.
	Practical exercises. Mechanisms		1	
	SEi, SE1 (N).Trans effect.		I	
	Reactions with heterolytic cleavage			
	of the carbon-carbon bond.			
8.	Lecture. Types of mechanism of	2		
0.	electrophilic aromatic substitution.	4		
	Isomeric σ -complexes.			
	Classification of substituents.			
	Orientation as a reflection of the			
	properties of σ-complex. Practical exercises. Orientation as a		1	
			I	
	reflection of the properties of the			
	original arena. π -donating			
	substituents and the π -acceptor			
	substituents. The ratio of ortho-and			
Δ	para-isomers.	2		SWM 5 A group of the
9.	Lecture. Nucleophilic aromatic	2		SWM -5. Asymmetric
	substitution. Anionic σ -complexes			synthesis and catalysis.
	in the reactions SNAr. Stabilising			Asymmetric alkylation
	groups and nucleophiles.			of the carbonyl group.
	Practical exercises. Intramolecular		1	
	1.2 complexes. Rearrangement and		1	
	intramolecular nucleophilic			
	substitution. Photochemical			
	reactions SNAr.	_		
10.	Lecture. Oxidation \Box -complexes.	2		
	Interaction			
	electrophiles. Bartoli reaction.			

	Kinetics and tele-substitution.			
	Vicarious nucleophilic substitution. Dimroth rearrangement type Practical exercises. Correlation equations, the principle of linearity of the Gibbs free energy. Hammett and Taft equation. Communication parameters of the correlation equations with the reaction mechanism.		1	
11.	Lecture. Cyclic reactions. General characteristics of pericyclic reactions. The theory of pericyclic reactions. The theory of electrocyclic reactions. Cycloaddition reactions. Practical exercises. Four-electron cycloaddition reactions. Electrocyclic reaction.	2	1	SWM-6. Reaction of amino acids in vivo. The biological role of esters.
12.	Lecture. Intramolecular rearrangements. Cyclic transition. Practical exercises. Aromaticity of the transition state. Diels-Alder reaction. Cycloaddition.	2	1	
13.	Lecture.Nucleophilicrearrangement to electron-carbonatom.Rearrangement of theWagner-Meerveynairelatedprocesses.The rate of migration ofdifferent groups.Practical exercises.Nucleophilicrearrangement to electron nitrogenatom.Nucleophilic1,2-rearrangement.	2	1	SWM-7. Synthesis of esters and ethers of monosaccharides. The oxidation of aldoses to aldonic acids, aldonic acids lactonization. Synthesis of monosaccharides by Kilian Fischer and degradation by Will- Ruff. Munoz as chiral synthons in the preparation of various biologically active substances (antibiotics, alkaloids, etc.).
14.	Lecture.Electrophilicrearrangement.Mechanism ofelectrophilicrearrangements.Single-electron shift in electrophilicrearrangements.Thermal radicalrearrangement.Practical exercises.Rearrangement ofHoffmannRearrangement offree radicals.	2	1	
15.	Lecture.Some new ideas about the mechanism of tautomeric transformations.Keto-enol	2		SWM-8. Solution of task

tautomerism. Imine-enamine		
tautomerism. Tautomerism in		
diazole.		
Practical exercises. Tautomerism		
in pyridines and pyridones.	1	
Tautomerism in nucleic acids		

Information about estimate, explanation of requisite work for each estimate:

N⁰	Type of course and work of students	Количество, %
1.	Assimilation of task on lecture	15
2	Carrying-out of task	15
3.	Results of self work of Master students	15
4.	Checking by discussion	15
	total	60
6.	Exam	40
	All:	100

Lecture

____Kudaibergenova B.M.

(signature)